Федеральное государственное бюджетное образовательное учреждение высшего образования

"Дальневосточный государственный университет путей сообщения" (ДВГУПС)

УТВЕРЖДАЮ

Зав.кафедрой (к911) Физика и теоретическая механика

Иванов В.И., профессор

06.05.2021

РАБОЧАЯ ПРОГРАММА

дисциплины Фотоиндуцированные процессы в наноразмерных средах

для направления подготовки 12.04.03 Фотоника и оптоинформатика

Составитель(и): к.ф.-м.н., Доцент, Ян Д.Т.

Обсуждена на заседании кафедры: (к911) Физика и теоретическая механика

Протокол от 06.05.2021г. № 5

Обсуждена на заседании методической комиссии по родственным направлениям и специальностям: Протоком

Визирование РПД для исполнения в очередном учебном году	
Председатель МК РНС	
2022 г.	
Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2022-2023 учебном году на заседании кафедры (к911) Физика и теоретическая механика	
Протокол от 2022 г. № Зав. кафедрой Иванов В.И., профессор	
Визирование РПД для исполнения в очередном учебном году	
Председатель МК РНС	
2023 г.	
Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2023-2024 учебном году на заседании кафедры (к911) Физика и теоретическая механика	
Протокол от 2023 г. № Зав. кафедрой Иванов В.И., профессор	
Визирование РПД для исполнения в очередном учебном году	
Председатель МК РНС	
2024 г.	
Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2024-2025 учебном году на заседании кафедры (к911) Физика и теоретическая механика	
Протокол от 2024 г. № Зав. кафедрой Иванов В.И., профессор	
Визирование РПД для исполнения в очередном учебном году	
Председатель МК РНС	
2025 г.	
Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2025-2026 учебном году на заседании кафедры (к911) Физика и теоретическая механика	
Протокол от 2025 г. № Зав. кафедрой Иванов В.И., профессор	

Рабочая программа дисциплины Фотоиндуцированные процессы в наноразмерных средах разработана в соответствии с ФГОС, утвержденным приказом Министерства образования и науки Российской Федерации от 19.09.2017 № 935

Квалификация магистр

Форма обучения очная

ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ) В ЗАЧЕТНЫХ ЕДИНИЦАХ С УКАЗАНИЕМ КОЛИЧЕСТВА АКАДЕМИЧЕСКИХ ЧАСОВ, ВЫДЕЛЕННЫХ НА КОНТАКТНУЮ РАБОТУ ОБУЧАЮЩИХСЯ С ПРЕПОДАВАТЕЛЕМ (ПО ВИДАМ УЧЕБНЫХ ЗАНЯТИЙ) И НА САМОСТОЯТЕЛЬНУЮ РАБОТУ ОБУЧАЮЩИХСЯ

Общая трудоемкость 4 ЗЕТ

Часов по учебному плану 144 Виды контроля в семестрах:

в том числе: зачёты с оценкой 3

контактная работа 70 РГР 3 сем. (2)

самостоятельная работа 74

Распределение часов дисциплины по семестрам (курсам)

Семестр (<Курс>.<Семес тр на курсе>)	3 (2.1)		И	того
Вид занятий	УП	РП	УП	РП
Лекции	32	32	32	32
Практически е	32	32 32		32
Контроль самостоятель ной работы	6	6	6	6
В том числе инт.	8	8	8	8
Итого ауд.	64	64	64	64
Контактная работа	70	70	70	70
Сам. работа	74 74		74	74
Итого	144	144	144	144

1. АННОТАЦИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

1.1 Мезоскопическая физика и нанотехнологии. Физика полупро-водников с пониженной размерностью. Оптические и электрооптические процессы в квантовых гетероструктурах. Оптоэлектронные приборы на основе наноструктур. Основные виды квантовых объектов. Классификация полупроводниковых наногетероструктур. Уравнение Шредингера. Динамика электронов в энергетических зонах. Энергетические зоны в полупроводниках. Оптические процессы в полупроводниках. Квантовые точки, квантовые нити. Экситоны в квантовых ямах. Полупроводниковые квантовые гетероструктуры. Сверхрешетки. Туннельный эффект. Квантовый перенос в наноструктурах. Кристаллы в магнитном поле. Квантовый эффект Холла. Оптические свойства квантовых гетероструктур. Оптоэлектронные устройства на основе наноструктур.

	2. МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ					
Код дис	Код дисциплины: Б1.В.ДВ.02.01					
2.1	2.1 Требования к предварительной подготовке обучающегося:					
2.1.1	Современная физика твердого тела					
2.1.2						
2.1.3	В Физические основы фотоники и оптоинформатики					
2.2	2.2 Дисциплины и практики, для которых освоение данной дисциплины (модуля) необходимо как предшествующее:					
2.2.1	Оптические методы передачи и обработки информации					
2.2.2	Производственно-технологическая практика					

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

УК-4: Способен применять современные коммуникативные технологии, в том числе на иностранном(ых) языке(ах), для академического и профессионального взаимодействия

Знать:

Правила и закономерности личной и деловой устной и письменной коммуникации; современные коммуникативные технологии на русском и иностранном языках; существующие профессиональные сообщества для профессионального

Уметь:

Применять на практике коммуникативные технологии, методы и способы делового общения для академического и профессионального взаимодействия.

Владеть:

Методикой межличностного делового общения на русском и иностранном языках, с применением профессиональных языковых форм, средств и современных коммуникативных технологий

УК-6: Способен определять и реализовывать приоритеты собственной деятельности и способы ее совершенствования на основе самооценки

Знать:

Методики самооценки, самоконтроля и саморазвития с использованием подходов здоровьесбережения.

Уметь:

Решать задачи собственного личностного и профессионального развития, определять и реализовывать приоритеты совершенствования собственной деятельности; применять методики самооценки и самоконтроля; применять методики, позволяющие улучшить и сохранить здоровье в процессе жизнедеятельности.

Владеть:

Технологиями и навыками управления своей познавательной деятельностью и ее совершенствования на основе самооценки, самоконтроля и принципов самообразования в течение всей жизни, в том числе с использованием здоровьесберегающих подходов и методик.

ПК-1: Готовность обосновать актуальность целей и задач проводимых научных исследований

Знать:

Современные научные достижения в области фотоники и оптоинформатики

Уметь:

Обосновывать актуальность целей и задач проводимых научных исследований

Владеть:

Способностью обосновать актуальность целей и задач проводимых научных исследований

ПК-3: Способность оценивать научную значимость и перспективы прикладного использования результатов исследования

Знать:

Современные научные достижения науки и техники

полупроводниках /Пр/

Уметь:

Оценивать научную значимость и перспективы прикладного использования результатов исследования

Владеть:

	владеть: Способностью оценивать научную значимость и перспективы прикладного использования результатов исследования						
4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ), СТРУКТУРИРОВАННОЕ ПО ТЕМАМ (РАЗДЕЛАМ) С УКАЗАНИЕМ ОТВЕДЕННОГО НА НИХ КОЛИЧЕСТВА АКАДЕМИЧЕСКИХ ЧАСОВ И ВИДОВ УЧЕБНЫХ ЗАНЯТИЙ							
Код занятия	Наименование разделов и тем /вид занятия/	Семестр / Курс	Часов	Компетен- ции	Литература	Инте ракт.	Примечание
	Раздел 1.						
1.1	Мезоскопическая физика и нанотехнологии /Лек/	3	2	УК-6 ПК-1 УК-4 ПК-3	Л1.1Л2.1 Л2.2 Л2.3	0	
1.2	Физика полупроводников с пониженной размерностью /Лек/	3	2	УК-6 ПК-1 УК-4 ПК-3	Л1.1Л2.1 Л2.2 Л2.3	0	
1.3	Оптические и электрооптические процессы в квантовых гетероструктурах /Лек/	3	2	УК-6 ПК-1 УК-4 ПК-3	Л1.1Л2.1 Л2.2 Л2.3	0	
1.4	Оптоэлектронные приборы на основе наноструктур /Лек/	3	2	УК-6 ПК-1 УК-4 ПК-3	Л1.1Л2.1 Л2.2 Л2.3	0	
1.5	Основные виды квантовых объектов. Классификация полупроводниковых наногетероструктур /Лек/	3	2	УК-6 ПК-1 УК-4 ПК-3	Л1.1Л2.1 Л2.2 Л2.3	0	
1.6	Уравнение Шредингера. Динамика электронов в энергетических зонах /Лек/	3	2	УК-6 ПК-1 УК-4 ПК-3	Л1.1Л2.1 Л2.2 Л2.3	0	
1.7	Энергетические зоны в полупроводниках. Оптические процессы в полупроводниках. /Лек/	3	2	УК-6 ПК-1 УК-4 ПК-3	Л1.1Л2.1 Л2.2 Л2.3	0	
1.8	Квантовые точки. Квантовые нити. Экситоны в квантовых ямах. /Лек/	3	2	УК-6 ПК-1 УК-4 ПК-3	Л1.1Л2.1 Л2.2 Л2.3	0	
1.9	Полупровдниковые квантовые гетероструктуры. /Лек/	3	2	УК-6 ПК-1 УК-4 ПК-3	Л1.1Л2.1 Л2.2 Л2.3	0	
1.10	Сверхрешетки /Лек/	3	2	УК-6 ПК-1 УК-4 ПК-3	Л1.1Л2.1 Л2.2 Л2.3	0	
1.11	Туннельный эффект /Лек/	3	2	УК-6 ПК-1 УК-4 ПК-3	Л1.1Л2.1 Л2.2 Л2.3	0	
1.12	Квантовый перенос в наноструктурах /Лек/	3	2	УК-6 ПК-1 УК-4 ПК-3	Л1.1Л2.1 Л2.2 Л2.3	0	
1.13	Кристаллы в магнитном поле /Лек/	3	2	УК-6 ПК-1 УК-4 ПК-3	Л1.1Л2.1 Л2.2 Л2.3	0	
1.14	Квантовый эффект Холла /Лек/	3	2	УК-6 ПК-1 УК-4 ПК-3	Л1.1Л2.1 Л2.2 Л2.3	0	
1.15	Оптические свойства квантовых гетероструктур /Лек/	3	2	УК-6 ПК-1 УК-4 ПК-3	Л1.1Л2.1 Л2.2 Л2.3	0	
1.16	Оптоэлектронные устройства на основе наноструктур /Лек/	3	2	УК-6 ПК-1 УК-4 ПК-3	Л1.1Л2.1 Л2.2 Л2.3	0	
2.1	Раздел 2.		2	VIIC CETT	п1 1 п2 1	1	D. 7
2.1	Основные виды квантовых объектов /Пр/	3	2	УК-6 ПК-1 УК-4 ПК-3	Л1.1Л2.1 Л2.2 Л2.3	1	Работа в малых группах
2.2	Классификация полупрводниковых наногетероструктур /Пр/	3	2	УК-6 ПК-1 УК-4 ПК-3	Л1.1Л2.1 Л2.2 Л2.3	0	
2.3	Уравнение Шредингера /Пр/	3	2	УК-6 ПК-1 УК-4 ПК-3	Л1.1Л2.1 Л2.2 Л2.3	1	работа в малых группах
2.4	Динамика электронов в энергетических зонах /Пр/	3	2	УК-6 ПК-1 УК-4 ПК-3	Л1.1Л2.1 Л2.2 Л2.3	0	
2.5	Энергетические зоны в полупроводниках /Пр/	3	2	УК-6 ПК-1 УК-4 ПК-3	Л1.1Л2.1 Л2.2 Л2.3	1	Метод проектов
2.6	Оптические процессы в	3	2	УК-6 ПК-1	Л1.1Л2.1	0	

УК-4 ПК-3

Л2.2 Л2.3

2.7	Квантовые точки, квантовые нити /Пр/	3	2	УК-6 ПК-1	Л1.1Л2.1	1	работа в
				УК-4 ПК-3	Л2.2 Л2.3		малых группах
2.8	Экситоны в квантовых ямах /Пр/	3	2	УК-6 ПК-1 УК-4 ПК-3	Л1.1Л2.1 Л2.2 Л2.3	0	
2.9	Полупроводниковые квантовые гетероструктуры /Пр/	3	2	УК-6 ПК-1 УК-4 ПК-3	Л1.1Л2.1 Л2.2 Л2.3 Э1 Э2	1	работа в малых группах
2.10	Сверхрешетки /Пр/	3	2	УК-6 ПК-1 УК-4 ПК-3	Л1.1Л2.1 Л2.2 Л2.3 Э1 Э2	0	
2.11	Туннельный эффект /Пр/	3	2	УК-6 ПК-1 УК-4 ПК-3	Л1.1Л2.1 Л2.2 Л2.3 Э1 Э2	1	работа в малых группах
2.12	Квантовый перенос в наноструктурах /Пр/	3	2	УК-6 ПК-1 УК-4 ПК-3	Л1.1Л2.1 Л2.2 Л2.3 Э1 Э2	0	
2.13	Наноструктуры в магнитном поле /Пр/	3	2	УК-6 ПК-1 УК-4 ПК-3	Л1.1Л2.1 Л2.2 Л2.3 Э1 Э2	1	Метод проектов
2.14	Квантовый эффект Холла /Пр/	3	2	УК-6 ПК-1 УК-4 ПК-3	Л1.1Л2.1 Л2.2 Л2.3 Э1 Э2	0	
2.15	Оптические свойства квантовых гетероструктур /Пр/	3	2	УК-6 ПК-1 УК-4 ПК-3	Л1.1Л2.1 Л2.2 Л2.3 Э1 Э2	1	работа в малых группах
2.16	Оптоэлектронные устройства на основе наноструктур /Пр/	3	2	УК-6 ПК-1 УК-4 ПК-3	Л1.1Л2.1 Л2.2 Л2.3 Э1 Э2	0	
2.17	Изучение литературы теоретического курса /Cp/	3	18	УК-6 ПК-1 УК-4 ПК-3	Л1.1Л2.1 Л2.3 Э1 Э2	0	
2.18	Подготовка к практическим занятиям /Cp/	3	10	УК-6 ПК-1 УК-4 ПК-3	Л1.1Л2.2 Л2.3 Э1 Э2	0	
2.19	Выполнение и защита РГР /Ср/	3	12	УК-6 ПК-1 УК-4 ПК-3	Л1.1Л2.2 Л2.3 Э1 Э2	0	
2.20	Подготовка к зачету /Ср/	3	26	УК-6 ПК-1 УК-4 ПК-3	Л1.1Л2.1 Л2.2 Л2.3 Э1 Э2	0	
	Раздел 3. Контроль						
3.1	/ЗачётСОц/	3	8	УК-6 ПК-1 УК-4 ПК-3	Л1.1Л2.1 Л2.2 Л2.3 Э1 Э2	0	

5. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ Размещены в приложении

	6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)						
	6.1. Рекомендуемая литература						
	6.1.1. Перечен	ь основной литературы, необходимой для освоения дисципл	ины (модуля)				
	Авторы, составители Заглавие Издательство, год						
Л1.1	Неволин В. К.	Зондовые нанотехнологии в электронике	Москва: Техносфера, 2014, http://biblioclub.ru/index.php? page=book&id=260697				
	6.1.2. Перечень д	ополнительной литературы, необходимой для освоения дисц	иплины (модуля)				
	Авторы, составители	Заглавие	Издательство, год				
Л2.1	Павлов Л.П.	Методы измерения параметров полупроводниковых материалов: Учеб. для вузов	Москва: Высш. шк., 1987,				
Л2.2	Ермаков О.Н.	Прикладная оптоэлектроника	Москва: Техносфера, 2004,				

	Авторы, составители	Заглавие	Издательство, год		
	Розеншер Э., Винтер Б., Ермаков О.Н.	Оптоэлектроника: пер. с франц.	Москва: Техносфера, 2006,		
6.2	6.2. Перечень ресурсов информационно-телекоммуникационной сети "Интернет", необходимых для освоения				

6.2. Перечень ресурсов информационно-телекоммуникационной сети "Интернет", необходимых для освоения дисциплины (модуля)

Э1	www.knigafund.ru	www.knigafund.ru
Э2	www.biblioclub.ru	www.biblioclub.ru

6.3 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем (при необходимости)

6.3.1 Перечень программного обеспечения

Антивирус Kaspersky Endpoint Security для бизнеса – Расширенный Russian Edition - Антивирусная защита, контракт 469 ДВГУПС

Антиплагиат - Система автоматической проверки текстов на наличие заимствований из общедоступных сетевых источников, контракт 12724018158180000974/830 ДВГУПС

Справочно-правовая система «Гарант»

Free Conference Call (свободная лицензия)

Zoom (свободная лицензия)

6.3.2 Перечень информационных справочных систем

- 1. Компьютерная справочно-правовая система "Консультант Плюс".
- 2. Информационно-правовое обеспечение "Гарант".
- 3. www.dynastyfdn.com Программы поддержки физиков студентов, аспирантов и молодых ученых.
- 4. www.knigafund.ru
- 5. www. biblioclub.ru

7. OI	7. ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)					
Аудитория	Назначение	Оснащение				
3328	Учебная аудитория для проведения занятий лекционного типа	комплект учебной мебели: столы, стулья, доска, тематические плакаты, проектор.				
3417	Учебная аудитория для проведения практических занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации	переносной проектор, тематические плакаты, комплект учебной мебели: парты, столы, доска				
3317	Помещения для самостоятельной работы обучающихся. Читальный зал НТБ	Тематические плакаты, столы, стулья, стеллажи Компьютерная техника с возможностью подключения к сети Интернет, свободному доступу в ЭБС и ЭИОС.				

8. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

Методические рекомендации по работе над конспектом лекций во время и после проведения лекции. В ходе лекционных занятий студентам необходимо вести конспектирование учебного материала, при этом запись лекций применения в республика по респу

в ходе лекционных занятии студентам неооходимо вести конспектирование учесного материала, при этом запись лекции рекомендуется вести по возможности собственными формулировками. Желательно оставить в рабочих конспектах поля, на которых во внеаудиторное время можно сделать пометки из рекомендованной литературы, дополняющие материал прослушанной лекции, а также подчеркивающие особую важность тех или иных теоретических положений. Следует обращать внимание на категории, формулировки, раскрывающие содержание тех или иных явлений и процессов, научные выводы и практические рекомендации по их применению, а также задавать преподавателю уточняющие вопросы с целью уяснения теоретических положений, разрешения спорных ситуаций. Над конспектами лекций надо систематическим работать: первый просмотр конспекта рекомендуется сделать вечером того дня, когда была прослушана лекции, затем вновь просмотреть конспект через 3-4 дня. В этом случае при небольших затратах времени студент основательно и глубоко овладевает материалом и к сессии приходит хорошо подготовленным. Работая над конспектом лекций, всегда следует использовать не только учебник, но и ту литературу, которую дополнительно рекомендовал лектор.

Методические рекомендации к практическим занятиям.

В течение практического занятия студенту необходимо выполнить задания, выданные преподавателем, для этого при подготовке к практическим занятиям студентам необходимо изучить основную литературу, ознакомиться с дополнительной литературой с учетом рекомендаций преподавателя и требований учебной программы.

Самостоятельная подготовка студента к следующей лекции должна состоять в первую очередь в перечитывании конспекта предыдущей лекции.

Технология организации самостоятельной работы обучающихся включает использование информационных и материальнотехнических ресурсов образовательного учреждения: библиотеку с читальным залом, укомплектованную в соответствии с существующими нормами; учебно-методическую базу учебных кабинетов, лабораторий и зала кодификации; компьютерные классы с возможностью работы в Интернет; аудитории (классы) для консультационной деятельности; учебную и учебно-методическую литературу, разработанную с учетом увеличения доли самостоятельной работы студентов, и иные методические материалы.

Виды самостоятельной работы студентов и их состав: изучение теоретического материала по учебной и учебно-методической литературе; отработка навыков решения задач по темам практических занятий; выполнение и оформление КР-контрольной работы; подготовка к защите РГР.

Методические рекомендации для подготовки к защите РГР.

Выполнение РГР осуществляется в домашних условиях. Для защиты студент самостоятельно изучает вопросы соответствующего раздела теории, повторяет физические законы и явления, необходимые для решения конкретной задачи. Защита РГР происходит на консультации, в установленное преподавателем время. Положительная отметка, полученная студентом при защите, выступает необходимой составляющей для допуска к зачету по данной дисциплине.

Студенты с ограниченными возможностями здоровья, в отличие от остальных студентов, имеют свои специфические особенности восприятия, переработки материала. Обучающиеся инвалиды, могут обучаться по индивидуальному учебному плану в установленные сроки с учетом особенностей и образовательных потребностей конкретного обучающегося.

Проведение учебного процесса может быть организовано с использованием ЭИОС университета и в цифровой среде (группы в социальных сетях, электронная почта, видеосвязь и др. платформы). Учебные занятия с применением ДОТ проходят в соответствии с утвержденным расписанием. Текущий контроль и промежуточная аттестация обучающихся проводится с применением ДОТ.